436 research outputs found

    Unsolvability of the Halting Problem in Quantum Dynamics

    Get PDF
    It is shown that the halting problem cannot be solved consistently in both the Schrodinger and Heisenberg pictures of quantum dynamics. The existence of the halting machine, which is assumed from quantum theory, leads into a contradiction when we consider the case when the observer's reference frame is the system that is to be evolved in both pictures. We then show that in order to include the evolution of observer's reference frame in a physically sensible way, the Heisenberg picture with time going backwards yields a correct description.Comment: 4 pages, 3 figure

    Comment on "The black hole final state"

    Get PDF
    Horowitz and Maldacena have suggested that the unitarity of the black hole S-matrix can be reconciled with Hawking's semiclassical arguments if a final-state boundary condition is imposed at the spacelike singularity inside the black hole. We point out that, in this scenario, departures from unitarity can arise due to interactions between the collapsing body and the infalling Hawking radiation inside the event horizon. The amount of information lost when a black hole evaporates depends on the extent to which these interactions are entangling.Comment: 4 pages, REVTe

    Scaling issues in ensemble implementations of the Deutsch-Jozsa algorithm

    Full text link
    We discuss the ensemble version of the Deutsch-Jozsa (DJ) algorithm which attempts to provide a "scalable" implementation on an expectation-value NMR quantum computer. We show that this ensemble implementation of the DJ algorithm is at best as efficient as the classical random algorithm. As soon as any attempt is made to classify all possible functions with certainty, the implementation requires an exponentially large number of molecules. The discrepancies arise out of the interpretation of mixed state density matrices.Comment: Minor changes, reference added, replaced with publised versio

    Use of geostatistical Bayesian updating to integrate airborne radiometrics and soil geochemistry to improve mapping for mineral exploration

    Get PDF
    Mineral exploration programmes around the world use data from remote sensing, geophysics, and direct sampling. On a regional scale, the combination of airborne geophysics and ground-based geochemical sampling can aid geological mapping and mineral exploration. Since airborne geophysical and traditional soil-sampling data are generated at different spatial resolutions, they are not immediately comparable due to their different sampling density. Several geostatistical techniques, including indicator cokriging and collocated cokriging, can be used to integrate different types of data into a geostatistical model. However, with increasing numbers of variables the inference of the crosscovariance model required for cokriging can be demanding in terms of effort and computational time. In this paper a Gaussian-based Bayesian updating approach is applied to integrate airborne radiometric data and ground-sampled geochemical soil data to maximize information generated from the soil survey, enabling more accurate geological interpretation for the exploration and development of natural resources. The Bayesian updating technique decomposes the collocated estimate into two models: prior and likelihood models. The prior model is built from primary information and the likelihood model is built from secondary information. The prior model is then updated with the likelihood model to build the final model. The approach allows multiple secondary variables to be simultaneously integrated into the mapping of the primary variable. The Bayesian updating approach is demonstrated using a case study from Northern Ireland. The geostatistical technique was used to improve the resolution of soil geochemistry, at a density of one sample per 2 km2, by integrating more closely measured airborne geophysical data from the GSNI Tellus Survey, measured over a footprint of 65 x 200 m. The directly measured geochemistry data were considered as primary data and the airborne radiometric data were used as secondary data. The approach produced more detailed updated maps and in particular enhanced information on the mapped distributions of zinc, copper, and lead. The enhanced delineation of an elongated northwest/southeast trending zone in the updated maps strengthened the potential for discovering stratabound base metal deposits

    Correlations and scaling in one-dimensional heat conduction

    Full text link
    We examine numerically the full spatio-temporal correlation functions for all hydrodynamic quantities for the random collision model introduced recently. The autocorrelation function of the heat current, through the Kubo formula, gives a thermal conductivity exponent of 1/3 in agreement with the analytical prediction and previous numerical work. Remarkably, this result depends crucially on the choice of boundary conditions: for periodic boundary conditions (as opposed to open boundary conditions with heat baths) the exponent is approximately 1/2. This is expected to be a generic feature of systems with singular transport coefficients. All primitive hydrodynamic quantities scale with the dynamic critical exponent predicted analytically.Comment: 7 pages, 11 figure

    Quantum Search with Two-atom Collisions in Cavity QED

    Full text link
    We propose a scheme to implement two-qubit Grover's quantum search algorithm using Cavity Quantum Electrodynamics. Circular Rydberg atoms are used as quantum bits (qubits). They interact with the electromagnetic field of a non-resonant cavity . The quantum gate dynamics is provided by a cavity-assisted collision, robust against decoherence processes. We present the detailed procedure and analyze the experimental feasibility.Comment: 4 pages, 2 figure

    Extended quantum conditional entropy and quantum uncertainty inequalities

    Get PDF
    Quantum states can be subjected to classical measurements, whose incompatibility, or uncertainty, can be quantified by a comparison of certain entropies. There is a long history of such entropy inequalities between position and momentum. Recently these inequalities have been generalized to the tensor product of several Hilbert spaces and we show here how their derivations can be shortened to a few lines and how they can be generalized. All the recently derived uncertainty relations utilize the strong subadditivity (SSA) theorem; our contribution relies on directly utilizing the proof technique of the original derivation of SSA.Comment: 4 page

    Kosterlitz-Thouless Transition Line for the Two Dimensional Coulomb Gas

    Full text link
    With a rigorous renormalization group approach, we study the pressure of the two dimensional Coulomb Gas along a small piece of the Kosterlitz-Thouless transition line, i.e. the boundary of the dipole region in the activity-temperature phase-space.Comment: 61 pages, 2 figure

    Life after charge noise: recent results with transmon qubits

    Full text link
    We review the main theoretical and experimental results for the transmon, a superconducting charge qubit derived from the Cooper pair box. The increased ratio of the Josephson to charging energy results in an exponential suppression of the transmon's sensitivity to 1/f charge noise. This has been observed experimentally and yields homogeneous broadening, negligible pure dephasing, and long coherence times of up to 3 microseconds. Anharmonicity of the energy spectrum is required for qubit operation, and has been proven to be sufficient in transmon devices. Transmons have been implemented in a wide array of experiments, demonstrating consistent and reproducible results in very good agreement with theory.Comment: 6 pages, 4 figures. Review article, accepted for publication in Quantum Inf. Pro

    On the universality of anomalous one-dimensional heat conductivity

    Full text link
    In one and two dimensions, transport coefficients may diverge in the thermodynamic limit due to long--time correlation of the corresponding currents. The effective asymptotic behaviour is addressed with reference to the problem of heat transport in 1d crystals, modeled by chains of classical nonlinear oscillators. Extensive accurate equilibrium and nonequilibrium numerical simulations confirm that the finite-size thermal conductivity diverges with the system size LL as Îș∝Lα\kappa \propto L^\alpha. However, the exponent α\alpha deviates systematically from the theoretical prediction α=1/3\alpha=1/3 proposed in a recent paper [O. Narayan, S. Ramaswamy, Phys. Rev. Lett. {\bf 89}, 200601 (2002)].Comment: 4 pages, submitted to Phys.Rev.
    • 

    corecore